skip to main content


Search for: All records

Creators/Authors contains: "Kneib, Jean-Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a new method to simultaneously and self-consistently model the mass distribution of galaxy clusters that combines constraints from strong lensing features, X-ray emission, and galaxy kinematics measurements. We are able to successfully decompose clusters into their collisionless and collisional mass components thanks to the X-ray surface brightness, as well as use the dynamics of cluster members, to obtain more accurate masses exploiting the fundamental plane of elliptical galaxies. Knowledge from all observables is included through a consistent Bayesian approach in the likelihood or in physically motivated priors. We apply this method to the galaxy cluster Abell S1063 and produce a mass model that we publicly release with this paper. The resulting mass distribution presents different ellipticities for the intra-cluster gas and the other large-scale mass components as well as deviation from elliptical symmetry in the main halo. We assess the ability of our method to recover the masses of the different elements of the cluster using a mock cluster based on a simplified version of our Abell S1063 model. Thanks to the wealth of mutliwavelength information provided by the mass model and the detected X-ray emission, we also found evidence for an ongoing merger event with gas sloshing from a smaller infalling structure into the main cluster. In agreement with previous findings, the total mass, gas profile, and gas mass fraction are all consistent with small deviations from the hydrostatic equilibrium. This new mass model for Abell S1063 is publicly available, as the lenstool extension used to construct it.

     
    more » « less
  2. ABSTRACT

    One of the main goals of the JWST is to study the first galaxies in the Universe. We present a systematic photometric analysis of very distant galaxies in the first JWST deep field towards the massive lensing cluster SMACS0723. As a result, we report the discovery of two galaxy candidates at z ∼ 16, only 250 million years after the big bang. We also identify two candidates at z ∼ 12 and six candidates at z ∼ 9−11. Our search extended out to z ≲ 21 by combining colour information across seven near-infrared camera and near-infrared imager and slitless spectrograph filters. By modelling the Spectral Energy Distributions (SEDs) with EAZY and BEAGLE, we test the robustness of the photometric redshift estimates. While their intrinsic (unlensed) luminosity is typical of the characteristic luminosity L* at z > 10, our high-redshift galaxies typically show small sizes and their morphologies are consistent with disks in some cases. The highest-redshift candidates have extremely blue ultraviolet-continuum slopes −3 < β < −2.4, young ages ∼10−100 Myr, and stellar masses around log (M⋆/M⊙) = 8.8 inferred from their spectral energy distribution modelling, which indicate a rapid build-up of their stellar mass. Our search clearly demonstrates the capabilities of JWST to uncover robust photometric candidates up to very high redshifts and peer into the formation epoch of the first galaxies.

     
    more » « less
  3. Abstract The data throughput of massive spectroscopic surveys in the course of each observation is directly coordinated with the number of optical fibers which reach their target. In this paper, we evaluate the safety and the performance of the astrobots coordination in SDSS-V by conducting various experimental and simulated tests. We illustrate that our strategy provides a complete coordination condition which depends on the operational characteristics of astrobots, their configurations, and their targets. Namely, a coordination method based on the notion of cooperative artificial potential fields is used to generate safe and complete trajectories for astrobots. Optimal target assignment further improves the performance of the used algorithm in terms of faster convergences and less oscillatory movements. Both random targets and galaxy catalog targets are employed to observe the coordination success of the algorithm in various target distributions. The proposed method is capable of handling all potential collisions in the course of coordination. Once the completeness condition is fulfilled according to initial configuration of astrobots and their targets, the algorithm reaches full convergence of astrobots. Should one assign targets to astrobots using efficient strategies, convergence time as well as the number of oscillations decrease in the course of coordination. Rare incomplete scenarios are simply resolved by trivial modifications of astrobots swarms’ parameters. 
    more » « less
  4. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  5. ABSTRACT We present the joint analysis of Neutral Hydrogen (H i) Intensity Mapping observations with three galaxy samples: the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples from the eBOSS survey, and the WiggleZ Dark Energy Survey sample. The H i intensity maps are Green Bank Telescope observations of the redshifted $21\rm cm$ emission on $100 \, {\rm deg}^2$ covering the redshift range 0.6 < z < 1.0. We process the data by separating and removing the foregrounds present in the radio frequencies with FastI ICA. We verify the quality of the foreground separation with mock realizations, and construct a transfer function to correct for the effects of foreground removal on the H i signal. We cross-correlate the cleaned H i data with the galaxy samples and study the overall amplitude as well as the scale dependence of the power spectrum. We also qualitatively compare our findings with the predictions by a semianalytical galaxy evolution simulation. The cross-correlations constrain the quantity $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm opt}}$ at an effective scale keff, where $\Omega _\rm {H\,\small {I}}$ is the H  i density fraction, $b_\rm {H\,\small {I}}$ is the H i bias, and $r_{\rm {H\,\small {I}},{\rm opt}}$ the galaxy–hydrogen correlation coefficient, which is dependent on the H  i content of the optical galaxy sample. At $k_{\rm eff}=0.31 \, h\,{\rm Mpc^{-1}}$ we find $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm Wig}} = [0.58 \pm 0.09 \, {\rm (stat) \pm 0.05 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-WiggleZ, $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm ELG}} = [0.40 \pm 0.09 \, {\rm (stat) \pm 0.04 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-ELG, and $\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm LRG}} = [0.35 \pm 0.08 \, {\rm (stat) \pm 0.03 \, {\rm (sys)}}] \times 10^{-3}$ for GBT-LRG, at z ≃ 0.8. We also report results at $k_{\rm eff}=0.24$ and $k_{\rm eff}=0.48 \, h\,{\rm Mpc^{-1}}$. With little information on H i parameters beyond our local Universe, these are amongst the most precise constraints on neutral hydrogen density fluctuations in an underexplored redshift range. 
    more » « less
  6. null (Ed.)
  7. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  8. Angeli, George Z. ; Dierickx, Philippe (Ed.)
  9. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  10. null (Ed.)